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Abstract

Recently, material cloud method (MCM) has been developed as a new approach for topology optimization. In
MCM, an optimal structure can be obtained by manipulating the sizes and positions of material clouds, which are
material patches with finite sizes and constant material densities, and the numerical analysis can be done using fixed
background finite element mesh. During the optimization procedure, only active elements, where more than one mate-
rial cloud is contained, are treated. With MCM, an expansion–reduction procedure of the design domain can be nat-
urally realized through movements of material clouds, so that a true optimal solution can be found without any
significant increase of computational costs. In this paper, we summarize the concept of MCM and prove the existence
of optimal solution(s) in the formulation of MCM to show the mathematical rigorousness of this new method. We show
the design examples for 3D engineering design problems to show the generality of this method.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since Bendsoe and Kikuchi�s (1988) pioneering work, topology optimization method has become pop-
ular and has been successfully applied into industrial design (Sigmund, 2001; Chang et al., 2001; Park et al.,
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2003). Bendsoe and Sigmund (2003) have systematically investigated the theory, methods and applications
of topology optimization.

Though the traditional density-based approach (Bendsoe, 1989; Yang and Chuang, 1994) has been most
commonly used for topology optimization due to its simplicity and good harmony with FEM, this ap-
proach has some complications like checkerboard-pattern and mesh-dependency that significantly influence
the computational results (Bendsoe and Sigmund, 2003).

Also another important complication to note is that the density-based approach can yield optimal solu-
tion for a given design space (Kim and Kwak, 2002). Therefore, the obtained optimal result depends on the
size and shape of the design space. In this sense, the obtained topology may not be the truly optimized one.

Recently, various new topology optimization techniques have been emerging in order to circumvent
some difficulties encountered in applications of the traditional density approach or density distribution
method (DDM).

First one is a level set approach (Sethian and Wiegmann, 2000; Belytschko et al., 2003). In this approach,
a level set function or implicit function is introduced to identify the material domain and the occurrence of
checkerboard-pattern can be avoided.

Second one is an element connectivity parameterization (ECP) approach (Yoon and Kim, 2005). In this
approach, all finite elements are kept solid throughout the optimization process and zero-length elastic links
are introduced to parameterize inter-element connectivity. A reasonable optimal solution can be obtained
for the geometrically nonlinear topology optimization problems.

Third one is various researches for an expansion and reduction of design domain or design space during
topology optimization procedure (Xie and Steven, 1993; Querin et al., 1998; Kim et al., 2003; Liu et al.,
2000; Kim and Kwak, 2002; Chang et al., 2004; Chang and Youn, in press). In the traditional density-based
approach (DDM), design domain is fixed as initially defined one and all elements in design domain should
be treated and other domain out of the initial design domain cannot be additionally treated irrespective of
the values of design variables throughout the optimization procedure. If the design domain or design space
can be adaptively modified depending on some information during design procedure, a better optimal de-
sign can be obtained with reduced computational costs.

Xie and Steven (1993), Querin et al. (1998), and Kim et al. (2003) proposed an evolutionary structural
optimization (ESO) approach, in which design space is element-wise reduced or expanded. Liu et al. (2000)
proposed a metamorphic development (MD) method, in which the optimization proceeds by metamorphic
development of a structure. Kim and Kwak (2002) proposed a design space optimization technique, in
which the design space is concurrently optimized with the design variables in the traditional density-based
approach.

In the aforementioned researches to modify the design domain or design space, the criteria to decide
whether a certain element should be added or excluded are arbitrary, depending on the application pro-
blem. On the other hand, pretty high computational costs are additionally required to calculate the infor-
mation related with the criteria.

Chang et al. (2004) and Chang and Youn (in press) proposed a new topology optimization approach
named material cloud method (MCM) and showed the results of MCM, compared with those of the tra-
ditional density-based approach for several 2D linear static design problems. In MCM, the modification of
design domain can be naturally and efficiently accomplished only depending on the change of values of de-
sign variables. In MCM, the design variables are central positions and sizes of material clouds, which are
independent material patches. The basic idea of MCM is to free the material from the computational mesh,
so that the material patches can be moved freely and independently with one another. By doing so, we can
resolve two significant obstacles in the traditional density-based method. First of all, if we provide enough
space for the material patches to move around, we can find a truly optimized topology without having to
rely on any special schemes for design-space modification. In doing so, we only need to track the material
patches and only the elements, which contain certain portion of any material patches, will be involved in the
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computation. Therefore, unlike in the traditional DDM, where every single element in the design space
needs to be treated in the computation, one can significantly reduce the number of elements involved during
the optimization process.

Cheng and Olhoff (1981) has pointed out the nonexistence of optimal solution(s) for an optimal thick-
ness problem of plates by some numerical experiments. Since then, Bendsoe (1984) indicated that the reason
for this nonexistence is the nonclosedness of the set of deflection functions corresponding to the set of
admissible designs and showed that existence could be obtained if a bound on the gradient of the thickness
function was imposed. A consequence of this nonexistence is that even if each discretization of the unre-
stricted problem is well posed, these solutions do not converge to a macroscopic design when the discret-
ization parameter tends to 0, and thinner patterns are exhibited. This phenomenon is often also referred to
in the literature as mesh dependency (Bourdin, 2001). To guarantee the existence of solutions, various kinds
of methods have been introduced (Bendsoe and Sigmund, 2003). One is a homogenization method, in which
the set of admissible domains is enlarged including the microstructures (Bendsoe and Kikuchi, 1988). An-
other approach is to add additional constraints on the set of admissible designs like an upper bound on the
perimeter of the resulting design (Ambrosio and Buttazzo, 1993; Beckers, 1999) or an upper bound on the
gradients of density function (Petersson and Sigmund, 1998). The third is a filtering method for a density
function (Bourdin, 2001) or a sensitivity (Sigmund, 1997).

In this paper, we prove the existence of optimal solution(s) in MCM to show the mathematic rigorous-
ness of this method and extend the application of MCM into 3D engineering design to show the generality
of this method.

The outline of this paper is as follows. In Section 2, basic concept and numerical formulation of MCM
are summarized. In Section 3, the existence of optimal solutions(s) is proved. In Section 4, the optimal re-
sults for 3D engineering problem are shown, compared with those of the traditional density-based method.
Finally, concluding remarks are given in Section 5.
2. Overview of the material cloud method (MCM)

In this section, we will shortly explain the basic optimization concept and numerical procedure of MCM,
which was prescribed in the previous research of MCM (Chang et al., 2004; Chang and Youn, in press). For
the sake of convenience, the compliance minimization problem for a 2D linear elastic structure will be
treated.

In MCM, an optimal design is to be extracted from the distribution of material clouds and the design
variables are the central positions and sizes of material clouds. The material cloud is a finite material patch
with a constant relative density of material as in Fig. 1. It is assumed that the shape of a material cloud is a
square for 2D problem or a cube for 3D problem.
Fig. 1. Material cloud (for 2D problem).
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In this research, there are three different ways of applying MCM for topology optimization. One is to
optimize only central positions of material clouds, named MCMP. Another is to optimize only sizes of
material clouds, named MCMS. The third is to optimize central positions of material clouds and sub-
sequently to optimize sizes of material clouds, named MCMPS.

2.1. MCMP

Firstly, the optimization concept of MCMP will be explained.
In MCMP, material clouds can move around independently crossing the element-boundary and overlap

one another under one condition that the sum of equivalent areas of material clouds contained in each ele-
ment should not exceed the area of the element, which is an upper bound in physical sense.

An active element is defined as an element in which more than one material cloud is contained and an
active node is defined as a node which constitutes the active element and an active DOF is defined as a DOF
related to the active node.

Fig. 2 depicts the optimization procedure of MCMP.
The procedure of MCMP is as follows:

(1) Step 1: Define a design domain and a sub-domain where material clouds are initially distributed
(Fig. 2(a)).

(2) Step 2: Allocate material clouds in all elements of the sub-domain (Fig. 2(a)).
(3) Step 3: Modify positions of material clouds until a convergence condition is satisfied (Fig. 2(b)–(d)).
(4) Step 4: Extract an optimal design form a converged distribution of material clouds (Fig. 2(e)).

In Fig. 2(a), the sub-domain is defined as a part of the whole design domain. In this case, the expansion
of the sub-domain can be naturally realized through the movements of material clouds. Utilizing this
expansion procedure, a true optimal design on a larger design domain can be obtained without any signif-
icant increase of computational costs.

At the initial optimization step, one material cloud per element on the sub-domain is allocated at the
center of the element. An area of material cloud, Amc

i is specified by user, which should be not smaller than
the size of an element, and then relative density of material cloud, qmc

i is determined by Eq. (1), which
means the ratio of a density of material cloud to a density of real material used in design. In Eq. (1),bAmc

i is an equivalent area of material cloud and Aelem
i is an area of element, where the material cloud is allo-

cated. A constant, a (2 (0, 1)) is initially given considering the allowable total amount of material in design.
If the computational mesh is uniform, all material clouds have same equivalent area:
Fig. 2.
(c) dis
densiti
bAmc
i ¼ qmc

i � Amc
i

�
or ðlmc

i Þ
2� ¼ a� Aelem

i . ð1Þ
Optimization procedure of MCMP: (a) initial distribution of material clouds, (b) modification of positions of material clouds,
tribution of material clouds during iterations, (d) converged distribution of material clouds, and (e) distribution of equivalent
es of elements corresponding to (d).
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In Fig. 2(d), the enlarged view of the distribution of material clouds can be seen on a certain part of de-
sign domain. It is observed that material clouds are overlapped one another. Fig. 2(e) shows a distribution
of equivalent densities of active elements corresponding to the result of Step 3, which will be used as a cri-
terion for extraction of an optimal design. The equivalent density of an active element is determined by the
amount of material clouds contained in that element, which will be quantitatively defined later in this sec-
tion. However, due to the finite sizes and number of material clouds, the topology obtained by MCMP is
not clear.

Next detailed numerical procedure of MCMP will be described.
The optimization problem can be stated like
Fig. 3
distrib
Minimize f ðbÞ
subject to gðbÞ 6 0;

blb 6 b 6 bub;

ð2Þ
where b ¼ ½b1 b2 � � � bNdv�1 bNdv
�T, Ndv: number of design variables.

In MCMP, design variables, b are the central positions of square-shape material clouds, ðxmc
i ; ymc

i Þ. The
number of design variables, Ndv is twice the number of material clouds, Nmc in 2D problem. The number of
material clouds, Nmc equals to the number of elements in the initial sub-domain. The area of an ith material
cloud, Amc

i and the relative density of the material cloud, qmc
i are fixed throughout the optimization

procedure.
The objective function, which is the compliance for a linear static problem, is defined by
f ðbÞ ¼
Z

XADDðbÞ
rðbÞ � uðbÞdXþ

Z
Ct

t � uðbÞds. ð3Þ
In Eq. (3), the active design domain, XADD is a domain which consists of all active elements and may be
changed during the optimization process. It is assumed that the traction surface, Ct and the traction, t
are independent on the design. And r and u are a body force and a displacement, respectively.

Before calculating the state-variable like the displacement of a structure, the density of an element for all
active elements should be defined. The density of an element, qelem

j is a ratio of a sum of equivalent areas of
material clouds contained in the element to the size of the element. In MCMP, this value can be defined as
in Eq. (4). It can be easily calculated in the case of rectangular regular meshes and square material clouds as
follows:
qelem
j ¼

PNmc

i¼1 ðAelem
j \ Amc

i Þ � qmc
i

h i
Aelem

j

. ð4Þ
. Distribution of the density of an element corresponding to an arbitrary distribution of material clouds: (a) arbitrary
ution of material clouds and (b) distribution of the density in active elements.
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Fig. 3 illustrates the concept of the density of an element in MCMP. In Fig. 3(a), two shaded elements
are not active elements. Fig. 3(b) shows the corresponding distribution of the density of an element for the
particular distribution of material clouds of Fig. 3(a).

The displacement field of a structure can be solved by
K �U ¼ F

where K ¼
PN elem

j¼1

kj;

F ¼
PN elem

j¼1

f j;

kj ¼ qelem
j

Z
Xj

BT
j �Dj � Bj dX;

f j ¼
Z

Xj

N � rðqelem
j ÞdXþ

Z
oXj

N � t ds:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð5Þ
In Eq. (5), Nelem means the number of active elements and Xj is the domain of an jth element and element-
stiffness matrix, kj is proportional to the density of the element without a penalization of an intermediate
density, which is a physical upper bound (Swan and Kosaka, 1997).

The sensitivity of the objective function can be easily calculated as in the case of the traditional density
approach. The reason why the size of a material cloud should not be smaller than the size of an element is
that the continuous sensitivity of the objective function should be obtained irrespective of the position of a
material cloud. If a material cloud which is smaller than the size of an element is completely included in a
certain element, the sensitivity of the objective function may be vanished. In this case, this material cloud
cannot change its position throughout the optimization process.

Side constraints of design variables in Eq. (2) can be determined considering following three simple con-
ditions. The first is that material clouds should be contained in the design domain. The second is that a
density of element in all active elements should be less than one, which is the physical limit. The third is
a move-limit, which is usually set up as the half of the size of an element.

Since all material clouds are coercively maintained in design domain by the side constraint, the inequal-
ity constraint on the amount of material in design needs not to be considered.

Instead, an inequality constraint on the sum of movements of material clouds as in Eq. (6) is considered
to achieve a consistent convergence of design variables during optimization process. In Eq. (6), the
constant, Cg is the sum of allowable movements of material clouds determined by side constraints and
the constant, a 2 (0,1) is usually set up as 0.5 in this research. In Eq. (6), ðxmc

i Þp and ðymc
i Þp are the x-

and y-coordinates of the ith material cloud at the previous iteration, respectively:
gðbÞ ¼
XNmc

i¼1

xmc
i � ðxmc

i Þp
��� ���þ ymc

i � ðymc
i Þp

��� ���� �
� a� Cg 6 0. ð6Þ
The sensitivity of the inequality constraint can be uniquely determined through restricting admissible
ranges of design variables considering the sensitivity of the objective function, as
og
obi
¼

1; if
of
obi

< 0;

0; if
of
obi
¼ 0;

�1; if
of
obi

> 0.

8>>>>>><
>>>>>>:

ð7Þ
In MCMP, an optimization algorithm based on the optimality criteria method developed by Diaz and
Kikuchi (1992) and Ma et al. (1995) is used. This algorithm was originally developed for topology
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optimization of an eigenvalue problem, but has been successfully applied into various kinds of problems
including static problems (Chang et al., 2001; Park et al., 2003). In this algorithm, only one inequality con-
straint can be treated. If additional constraints should be considered, MMA algorithm (Svanberg, 1987,
2002), in which more constraints can be treated, could be employed.

2.2. MCMS

Firstly, the optimization concept of MCMS will be explained.
In MCMS, a material cloud can grow and shrink only in the element where it is initially allocated, but

cannot be vanished. Therefore, material clouds cannot be overlapped each other and the active design do-
main, which consists of all active elements, cannot be changed from initially defined whole design domain.
Relative densities of material clouds are specified as unity and then initial areas of material clouds are deter-
mined similarly to the case of MCMP by Eq. (1).

Fig. 4 depicts the optimization procedure of MCMS.
The procedure of MCMS is as follows:

(1) Step 1: Define a design domain (Fig. 4(a)).
(2) Step 2: Allocate material clouds in all elements of the design domain (Fig. 4(a)).
(3) Step 3: Modify sizes of material clouds until a convergence condition is satisfied (Fig. 4(b)–(d)).
(4) Step 4: Extract an optimal design from a converged distribution of material clouds (Fig. 4(d)).

At Step 2, one material cloud is allocated in each element and the central position of the material cloud is
identical to the center of the element. In Fig. 4(c), sizes of material clouds are varied in a range from a very
small value to the size of an element. By MCMS, a clear optimal design configuration is obtained as shown
in Fig. 4(d).

Next detailed numerical procedure of MCMS will be described.
In MCMS, design variables, b are the sizes of square-shape material clouds. The number of design vari-

ables, Ndv is the number of material clouds, Nmc. The number of material clouds, Nmc equals to the number
of elements in the design domain. The size of a material cloud may be represented by the area, Amc

i or the
length, lmc

i of a material cloud. The central position of a material cloud, ðxmc
i ; ymc

i Þ and the relative density of
a material cloud, qmc

i are fixed throughout the optimization process.
The objective function, which is the compliance for a linear static problem, is defined as
Fig. 4.
distrib
f ðbÞ ¼
Z

XMCDðbÞ
r � uðbÞdXþ

Z
Ct

t � uðbÞds. ð8Þ
Optimization procedure of MCMS: (a) initial distribution of material clouds, (b) modification of sizes of material clouds, (c)
ution of material clouds during iterations, (d) converged distribution of material clouds.



Fig. 5. Material cloud domain and integration domain in MCMS: (a) material cloud domain and (b) integration domain for one
material cloud.
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In Eq. (8), XMCD is the material cloud domain, which is the domain occupied by all material clouds (black
region in Fig. 5(a)). It is assumed that the traction surface, Ct, the traction, t and the body force, r are inde-
pendent on the design.

In this section, all descriptions will be made for the case when the area of a material cloud, Amc
i is used as

a design variable.
In MCMS, the density of an element, qelem

j can be defined as follows:
qelem
j ¼

Amc
j

Aelem
j

. ð9Þ
The displacement field of a structure can be solved by
K �U ¼ F;

where K ¼
PN elem

j¼1

kj;

F ¼
PN elem

j¼1

f j;

kj ¼ P ðqelem
j Þ

Z
Xmc

j

BT
j �Dj � Bj dX;

f j ¼
Z

Xmc
j

N � rdXþ
Z

oXj

N � t ds:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð10Þ
For the calculation of the element-stiffness matrix, kj in Eq. (10), the integration domain is the domain of
the material cloud contained in the element, Xmc

j (Fig. 5(b)). The element-stiffness matrix, kj is penalized by
a material property function, P ðqelem

j Þ, so that the densities of elements are converged to unity or to a very
small value as in the traditional density approach. In this research, an exponential function is used as the
penalization function of the material property. As previously described, the integration domain is shrunk in
proportion to the ratio of the area of the material cloud, Xmc

j to the area of the corresponding element, Xj.
Thus compared with the case of the traditional density approach, one-order lower exponent, n = 2 is used
in order to apply a similar effect of penalization.

One inequality constraint on the allowable amount of material is considered. In Eq. (11), A0 is an allow-
able maximum area of material:
gðbÞ ¼
Z

XMCD
dX� A0 ¼

XNmc

i¼1

½Amc
i � � A0 6 0. ð11Þ
In Eq. (2), the upper bound and the lower bound of design variables are the size of an element and very
small value, respectively.
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The sensitivity of the objective function and the inequality constraint can be easily calculated numeri-
cally as in the case of the traditional density approach.

As an optimization algorithm, the optimality criteria-based algorithm in the case of MCMP is identically
used.

In MCMS, lower-order elements or higher-order elements may be used. The checkerboard-pattern in the
case of lower-order elements can be suppressed with a density redistribution algorithm used in the tradi-
tional density approach (Youn and Park, 1997; Swan and Kosaka, 1997). In this research, we used higher-
order elements without any special scheme (Jog and Haber, 1996).

The optimization procedure of MCMS may seem to be similar with that of the traditional density ap-
proach like SIMP (solid isotropic material with penalization; Bendsoe and Sigmund, 2003). But due to
the difference of optimization concepts, even though the same optimization algorithm is applied, the con-
vergence and final results are quite different from those of SIMP. This fact can be obviously observed in the
numerical examples of Chang et al. (2004) and Chang and Youn (in press).

2.3. MCMPS

In MCMPS, MCMP and MCMS are sequentially applied.
Fig. 6 depicts the optimization procedure of MCMPS.
The application procedure of MCMPS is as follows:

(1) Step 1: Define a design domain and a sub-domain where material is initially distributed (Fig. 6(a)).
(2) Step 2: Allocate material clouds in all elements of the sub-domain (Fig. 6(a)).
(3) Step 3: Modify positions of material clouds by MCMP until a convergence condition is satisfied

(Fig. 6(b)).
(4) Step 4: From the result of Step 3, determine the equivalent sizes of material clouds in all active ele-

ments (Fig. 6(c)–(d)).
(5) Step 5: Modify sizes of material clouds by MCMS until a convergence condition is satisfied (Fig. 6(e)).
(6) Step 6: Extract an optimal design from the converged distribution of material clouds (Fig. 6(e)).

Except Step 4, all other procedures are identical to those of MCMP and MCMS. The result of material
distribution after MCMP is used as the initial distribution for the subsequent MCMS (Fig. 6(b)–(d)). At the
initial distribution for MCMS, the size of a material cloud can be determined by Eq. (12). In Eq. (12), qelem

i

is the density of an element when MCMP is terminated (Fig. 6(c)). Fig. 6(d) shows a re-initialized distribu-
tion of material clouds for the subsequent MCMS. By MCMPS, a clear optimal distribution is obtained as
shown in Fig. 6(e):
Fig. 6.
materi
materi
Optimization procedure of MCMPS: (a) initial distribution of material clouds for MCMP, (b) converged distribution of
al clouds after MCMP, (c) distribution of equivalent densities of elements corresponding to (b), (d) initial distribution of
al clouds for subsequent MCMS, and (e) final material distribution after MCMS.
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Amc
i ¼ Aelem

i � qelem
i . ð12Þ
In MCMPS, the design domain can be naturally expanded and reduced through movements of material
clouds by MCMP and a clear resulting topology can be obtained with fast convergence by subsequent
MCMS (Chang and Youn, in press).
3. Proof of existence of optimal solutions

In this paper, we show the existence of optimal solution(s) for a case of MCMP where finite material
clouds are used with a corresponding computational mesh. In MCMS, the (active) design domain is fixed
throughout the optimization procedure, so the existence-proof can be trivially shown, following the math-
ematical analysis by Petersson and Sigmund (1998). Moreover, it can be said that this for MCMPS is shown
considering both results of MCMP and MCMS.

The procedure of existence-proof by Petersson and Sigmund (1998) is much referred in this research.
Petersson and Sigmund (1998) proved that finite elements solutions corresponding to different mesh sizes
converged the exact solution(s) for slope-constrained density-based topology optimization problem.

The existence-proof procedure in MCMP is not trivial like the case of the density-based approach for a
finite computational mesh, because the active design domain in MCMP is changed throughout the optimi-
zation procedure. Until now, there is no research about the mathematical analysis for this kind of optimi-
zation problem, where the design domain or design space may be changed during optimization procedure.

3.1. The existence-proof in MCMP

In this section, we treat the optimization procedure of MCMP where the compliance is to be minimized
for 2D linear elastic structure. The procedure and result of this section can be easily extended also for 3D
problem.

For the convenience of following the mathematical procedure, refer Fig. 7, which define a typical com-
pliance minimization problem. In Fig. 7, X is a whole design domain for MCMP.

The discretized minimum compliance problem, (MC)h corresponding to a computational mesh with
mesh size, h is defined as in Eq. (13). We follow the notation used by Petersson and Sigmund (1998). In
Eq. (13), XADD is the active design domain and is marked as gray-region in Fig. 8 for a certain design.
The function, lbhð�Þ and the function, abhð�; �Þ are the compliance (or external work) and the internal energy
corresponding to a design, bh, respectively:
ðMCÞh

Find ðu�h; b
�
hÞ 2 V hjXADDðb�hÞ

� Hh

such that ab�h
ðu�h; vhÞ ¼ lb�h

ðvhÞ; 8vh 2 V hjXADDðb�hÞ
; and lb�h

ðu�hÞ 6 lbhðuhÞ
for all ðuh; bhÞ 2 V hjXADDðbhÞ � H h satisfying abhðuh; vhÞ ¼ lbhðvhÞ; 8vh 2 V hjXADDðbhÞ.

8><
>: ð13Þ
Fig. 7. Definition of a typical optimization problem in MCMP.
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In Eq. (13), Hh is a set of admissible designs for the discretized optimization problem, defined in Eq. (14). In
Eq. (14), N is the number of material clouds. The set, Hh is a bounded and closed finite dimensional space,
so that it is compact by Heine–Borel Theorem (Oden and Demkowicz, 1996):
Hh ¼ bh ¼ ðxT;yTÞT � RN �RN j gðbhÞ6 0; xlb 6 x6 xub; ylb 6 y6 yub; Ellipticity condition holds
n o

.

ð14Þ
In Eq. (13), V hjXADDðbhÞ is a set of kinematically admissible displacements corresponding to a design, bh, as
defined in Eq. (15). And VhjX is a set of kinematically admissible displacements defined on the whole design
domain, X, as defined in Eq. (16). Nae is the number of active elements for a design, bh and Ne is the number
of total elements in X. Pl is a polynomial function of a order, l:
V hjXADDðbhÞ ¼ vh j ðvhÞi 2C0
�
XADDðbhÞ

�
; ðvhÞijXj

2 P lðXjÞ; ðvhÞi ¼ 0 on Cu; 8ið¼ 1;2Þ; jð¼ 1;2; . . . ;N aeÞ
n o

;

ð15Þ

V hjX ¼ vh j ðvhÞi 2C0ðXÞ; ðvhÞijXj
2 P lðXjÞ; ðvhÞi ¼ 0 on Cu; 8ið¼ 1;2Þ; jð¼ 1;2; . . . ;NeÞ

n o
. ð16Þ
A function, vh ð2 V hjXADDðbhÞÞ can be extended to a unique function, vext
h ð2 V hjXÞ through being defined as

having zero-nodal values on the inactive design domain, XIADD (=X � XADD). The extended function, vext
h

may have nonzero value on the domain of the neighboring elements, XNED(bh) of the active design domain,
XADD(bh).

In Eq. (13), the following equation is the variational equation for equilibrium for the structure corre-
sponding to a design, bh:
abhðuh; vhÞ ¼ lbhðvhÞ; 8vh 2 V hjXADDðbhÞ. ð17Þ
The internal energy, abhðuh; vhÞ for a design, bh is defined on V hjXADDðbhÞ � V hjXADDðbhÞ as in Eq. (18). Since
the relative density, q is bounded from above, the bicontinuity condition, which is defined as in Eq.
(19), is satisfied. In Eq. (19), kÆkm,p,X denote usual norm in the Sobolev space, Wm,p(X) (Adams, 1975). Since
the relative density, q is bounded from below, the uniform ellipticity condition as shown in Eq. (20) is
satisfied:
abhðuh; vhÞ ¼
Z

XADDðbhÞ
qðbhÞ

oðuhÞi
oxj

E ijkl
oðvhÞk
oxl

dX; ð18Þ

abhðuh; vhÞ
�� �� 6 Mkuhk1;2;XADDkvhk1;2;XADD ; 8uh; vh 2 V hjXADDðbhÞ; 8bh 2 H h; ð19Þ
abhðuh; uhÞP akuhk2

1;2;XADD ; 8uh 2 V hjXADD ; 8bh 2 Hh. ð20Þ
When defining the set, Hh, several singular designs as shown in Fig. 9, which may not satisfy the ellipticity
condition, are excluded. Actually, designs in Fig. 9 are not optimal.



Fig. 9. Excluded designs: (a) Case 1, (b) Case 2 and (c) Case 3.
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The external work done by an applied force, lbhð�Þ is assumed to satisfy the bounded feature as
klbhk ¼ sup
06¼vh2V hjXADDðbhÞ

jlbhðvhÞj
kvhk1;2;XADDðbhÞ

< þ1. ð21Þ
Given any h > 0, a pair ðuh; bhÞ 2 V hjXADDðbhÞ � Hh satisfying the equilibrium condition in Eq. (17) is
called an admissible pair in (MC)h. In Eq. (17), there exists an unique displacement solution,
uh ð2 V hjXADDðbhÞÞ corresponding to a design, bh, because the bicontinuity condition, Eq. (19) and the uni-
form ellipticity condition, Eq. (20) holds (Ciarlet, 1978).

Considering Eqs. (17), (20) and (21) for this case, the following bounded feature of vh ð2 V hjXADDðbhÞÞ can
be obtained as
kvhk1;2;XADDðbhÞ 6 klbhk=a. ð22Þ
For an special case that the active design domain, XADD equals to the whole design domain, X, all pre-
vious results also hold. Since Eq. (22) holds, the set, VhjX defined on the whole design domain, X, is weakly
sequentially compact (Oden and Demkowicz, 1996).

Let consider a sequence,
�
ðuhÞext

n ; ðbhÞn
�
2 V hjX � Hh extended from a sequence of arbitrary admissible

pairs,
�
ðuhÞn; ðbhÞn

�
2 V hjXADDððbhÞnÞ � H h. Since the set, Hh is compact and the set, VhjX is weakly sequentially

compact, there is a subsequence,
�
ðuhÞext

nk
; ðbhÞnk

�
2 V hjX � Hh of any given sequence,

�
ðuhÞext

n ; ðbhÞn
�
2

V hjX � H h that satisfy
ðuhÞext
nk
! ðuhÞext weakly in V hjX;

ðbhÞnk
! bh 2 H h uniformly in RN � RN .

ð23Þ
In particular, a minimizing sequence,
�
ðuhÞn; ðbhÞn

�
2 V hjXADDððbhÞnÞ � Hh to (MC)h satisfy
ðuhÞext
nk
! u�h
� �ext

weakly in V hjX;
ðbhÞnk

! b�h 2 H h uniformly in RN � RN ;
ð24Þ
for some elements ðu�hÞ
ext and b�h and some subsequence.

Next, we will show that a pair, ðu�h; b
�
hÞ 2 V hjXADDðb�hÞ

� H h, which is extracted from an arbitrary pair of
cluster points,

�
ðu�hÞ

ext
; b�h
�
, is coupled through equilibrium (Eq. (17)). Here, u�h ð2 V hjXADDðb�hÞ

Þ is an uniquely
determined function from ðu�hÞ

ext ð2 V hjXÞ, which has a same value with ðu�hÞ
ext on a domain, XADDðb�hÞ.

As ðbhÞnk
converges uniformly to b�h and a function, F : ðbhÞnk

ð2 HhÞ ! XADD ð� XÞ is continuous,
XADDððbhÞnk

Þ and V hjXADDððbhÞnk
Þ also converge to XADDðb�hÞ and V hjXADDðb�hÞ

, respectively.

Hence, passing to the limit in Eq. (25), which is an equilibrium equation for a pair of subsequence,�
ðuhÞnk

; ðbhÞnk

�
2 V hjXADDððbhÞnk

Þ � Hh, we arrive at Eq. (17):
aðbhÞnk
ððuhÞnk

; vhÞ ¼ lðbhÞnk
ðvhÞ; 8vh 2 V hjXADDððbhÞnk

Þ. ð25Þ
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Utilizing the fact that the limit pair is coupled through equilibrium, we can show that the displacement
subsequence, ðuhÞext

nk
converges strongly to ðu�hÞ

ext in a domain, X:
ðuhÞext
nk
� u�h
� �ext

��� ���
1;2;X
¼ ðuhÞext

nk
� u�h
� �ext

��� ���
1;2; X1 ðbhÞnkð ÞUX1 b�hð Þð Þ

ð26Þ

a ðuhÞext
nk
� u�h
� �ext

��� ���
1;2;X2

6 aðbhÞnk
ðuhÞnk

� u�h
� �extjX2 ; ðuhÞnk

� u�h
� �extjX2

� �
¼ aðbhÞnk

ðuhÞnk
� u�h
� �extjX2 ;� u�h

� �extjX2

� �
þ aðbhÞnk

ðuhÞnk
; ðuhÞnk

� �
� aðbhÞnk

u�h
� �extjX2 ; ðuhÞnk

� �
¼ aðbhÞnk

ðuhÞnk
� u�h
� �extjX2 ;� u�h

� �extjX2

� �
þ lðbhÞnk

ðuhÞnk

� �
� aðbhÞnk

u�h
� �extjX2 ; ðuhÞnk

� �
ð27Þ
In Eq. (26), X1 means the union of XADD and XNED. If XADDððbhÞnk
Þ converges to XADDðb�hÞ, X1ððbhÞnk

Þ also
converges to X1ðb�hÞ. And if the quantity, k � k1;2;XADD converges to zero, the quantity, k � k1;2;ðXADD[XNEDÞ also

converges to zero. In Eq. (27), X2 means XADDððbhÞnk
Þ and ðu�hÞ

extjX2 is a restriction of ðu�hÞ
ext to X2. The first

term in Eq. (27) converges to zero and the second term to lb�h
ðu�hÞ. The third one converges to ab�h

ðu�h; u�hÞ,
which equals to lb�h

ðu�hÞ by the equilibrium condition.
And passing to the limit in Eqs. (26) and (27), finally we can conclude
ðuhÞext
nk
! u�h
� �ext

strongly in V hjX;
ðbhÞnk

! b�h 2 H h uniformly in RN � RN and

ab�h
u�h; vh

� �
¼ lb�h

ðvhÞ; 8vh 2 V hjXADD b�hð Þ; lb�h
u�h
� �

6 lðbhÞnk
ðuhÞnk

� �
.

ð28Þ
4. Numerical examples

In this section, we present the results of two 3D design examples, in order to verify the applicability of
MCM for more general problems. To extend the concept and code of MCM to 3D problems, the volume of
each material cloud should be treated instead of the area in 2D problems. Objective function is the com-
pliance of a structure with linear elastic behavior. All examples are solved with 20-node quadrilateral finite
elements. Except what are noted, all parameters used in the optimization algorithm for MCM and DDM
are same.

We recommend you to read Chang and Youn (in press) in advance. You can see various interesting fea-
tures of MCM, compared with the traditional density approach, because they have treated various exam-
ples including typical problems in topology optimization like 2D Michell truss design.

4.1. Example 1: 3D simple support design

The results of MCMPS and DDM are compared for 3D simple example. The problem is defined in
Fig. 10. Actually, one quarter model is treated, imposing the symmetry condition. A 40 · 10 · 10 mesh
is used. The displacement is constrained to vanish on the left surface of the domain. The volume constraint
is V0 = 0.1Vdes. Young�s modulus, E = 70 GPa and Poisson�s ratio, m = 0.3.

We compare the results of following three cases. In Case 1, we apply the traditional density-approach
(DDM). In Cases 2 and 3, we apply MCMPS. While the initial design domain in Case 2 is the whole design
domain, this one in Case 3 is only inner part of the whole design domain, shaded region in Fig. 10(b).



Fig. 10. Problem definition (Example 1): (a) design domain and (b) initial design domain for Case 3.

Fig. 11. Optimal material distribution (Example 1, Case 1): (a) 3D view, (b) front view, and (c) side view.

Fig. 12. Optimal material distribution (Example 1, Case 2): (a) 3D view, (b) front view, and (c) side view.

Fig. 13. Optimal material distribution (Example 1, Case 3): (a) 3D view, (b) front view, and (c) side view.
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Fig. 14. Initial distribution of material clouds for the subsequent MCMS (Example 1, Case 2): (a) 3D view, (b) front view, and (c) side
view.
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Figs. 11–13 show the optimal results of Cases 1, 2, and 3, respectively. The optimal material distributions
for two cases of MCMPS are quite different from that of DDM. Actually, it can be said that two
approaches search different local solutions. From Fig. 14, one can observe the intermediate result of
MCM, just after MCMP.

Table 1 compares the results and computational times for three cases. In Table 1, the computational time
ratio means the ratio of the computational time of each case to that of DDM (Case 1). Although the opti-
mal results of MCM are somewhat worse than that of DDM, the computational times are significantly
saved due to the reduced number of active elements during optimization procedure.

4.2. Example 2: 3D arch-type bridge design

The results of MCMPS and DDM are compared for 3D bridge design problem under a distributed load.
The problem is defined in Fig. 15. The optimization problem is modeled as in Fig. 15(b), considering the
periodicity of the structure. The upper part of the model is assigned as nondesign domain. Actually, one
quarter model is treated, imposing the symmetry condition. A 20 · 10 · 22 mesh is used. The displacement
is constrained to vanish on the part of the bottom surface. The volume constraint is V0 = 0.2Vdes. The
material is a typical concrete. Young�s modulus, E = 30 MPa and Poisson�s ratio, m = 0.33.
Table 1
Comparison of the results (Example 1)

Case 1 Case 2 Case 3

Objective function (·10�9 N m) 1.3728 1.5914 1.6837
Computational time ratio 1.00 0.74 0.29

Fig. 15. Problem definition (Example 2): (a) arch-type real bridge and (b) modeling.



Fig. 17. Optimal design (Example 2, MCMPS): (a) 3D view, (b) front view, and (c) side view.

Fig. 16. Optimal design (Example 2, DDM): (a) 3D view, (b) front view, and (c) side view.
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Figs. 16 and 17 show the optimal results of DDM and MCMPS, respectively. The optimal design for
MCMPS is quite different from that of DDM. Main difference is that the optimal result of MCMPS has
a hole on the side view and larger support of the top plate. Fig. 18 shows the history of the number of active
elements during optimization procedure. In MCMPS, the number of active elements is changed, which is
strictly less than the fixed number of DDM, so the computational cost can be significantly reduced.
Fig. 18. The history of the number of active elements (Example 2).

Table 2
Comparison of the results (Example 2)

DDM MCMPS

Objective function (N m) 1.7151 1.4151
Computational time ratio 1 0.6071
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Table 2 compares the results and computational times for DDM and MCMPS. In the case of MCMPS,
the better optimal result was obtained with the reduced computational time. However, the result of
MCMPS is not always better than that of DDM, since two approaches search different local solutions.

From this numerical experiment, it can be observed that both approaches can produce reasonable opti-
mal results for 3D real bridge design.
5. Conclusions

In this paper, the existence of optimal solution(s) of material cloud method (MCM) is proved for a case
of a finite number of material clouds. Therefore, it can be affirmed that the numerical formulation of this
method for optimal design is mathematically rigorous. In the mathematical analysis of MCMP, where the
active design domain is varied, the one-to-one relationship between displacement functions defined on the
admissible design domain and the whole design domain is utilized. Except this idea, all other proving pro-
cedure is very similar to that in the case of the density-based approach. It is shown that the cluster-point(s)
of a minimizing sequence are included in the design set utilizing the compactness of sets.

However, what is shown in this paper is the existence of solution(s) only for a specific computational
mesh. We believe that some additional constraints need to be considered in the problem formulation to en-
sure the convergence of optimal solutions for different mesh sizes. A research about how to ensure the con-
vergence of optimal solutions in MCM will be a future task.

The application of this method is extended to 3D engineering design problems. To do this, the volume of
each material cloud needs to be treated instead of the area in 2D problems. Through several design exam-
ples, the generality of MCM can be shown. Coinciding with the anticipated merit of MCM, the computa-
tional cost can be significantly saved due to the reduced number of active elements in design domain. But it
is observed that the optimal solution may be better or worse than that of the traditional density-based ap-
proach depending on the problem, because two methods search different local optimal solutions.
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